Domain Adaptation with L2 constraints for classifying images from different endoscope systems

نویسندگان

  • Toru Tamaki
  • Shoji Sonoyama
  • Takio Kurita
  • Tsubasa Hirakawa
  • Bisser Raytchev
  • Kazufumi Kaneda
  • Tetsushi Koide
  • Shigeto Yoshida
  • Hiroshi Mieno
  • Shinji Tanaka
  • Kazuaki Chayama
چکیده

This paper proposes a method for domain adaptation that extends the maximum margin domain transfer (MMDT) proposed by Hoffman et al., by introducing L2 distance constraints between samples of different domains; thus, our method is denoted as MMDTL2. Motivated by the differences between the images taken by narrow band imaging (NBI) endoscopic devices, we utilize different NBI devices as different domains and estimate the transformations between samples of different domains, i.e., image samples taken by different NBI endoscope systems. We first formulate the problem in the primal form, and then derive the dual form with much lesser computational costs as compared to the naive approach. From our experimental results using NBI image datasets from two different NBI endoscopic devices, we find that MMDTL2 is more stable than MMDT and better than support vector machines without adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Two New Methods of Boundary Correction for Classifying Textural Images

With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...

متن کامل

Three Approaches to Understanding and Classifying Mental Disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC)

The classification of mental disorders has long been the subject of controversy among mental health professionals. Despite a Significant expansion of knowledge about mental disorders during the past half century, understanding of their processes and components remains rudimentary. This article provides descriptions of three systems with different purposes relevant to understanding and classifyi...

متن کامل

Transfer Learning for Endoscopic Image Classification

In this paper we propose a method for transfer learning of endoscopic images. For transferring between features obtained from images taken by different (old and new) endoscopes, we extend the Max–Margin Domain Transfer (MMDT) proposed by Hoffman et al. in order to use L2 distance constraints as regularization, called Max–Margin Domain Transfer with L2 Distance Constraints (MMDTL2). Furthermore,...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.02443  شماره 

صفحات  -

تاریخ انتشار 2016